Computer Problems 4 / 5

2-D and 3-D nonlinear quasi-compressible flow

Description: 2-D/3-D evolution of density currents

Due: Pgm4/5 is due during Finals week. *Ignore/omit all v terms and y-derivatives for 2-D.*

A. Equations

There are 5 unknowns: horizontal flow components (u and v, m s⁻¹), vertical flow (w, m s⁻¹), potential temperature (θ , deg. K), and perturbation pressure (p', Pa). The base-state time-invariant density (\bar{p} , g kg⁻¹) and temperature ($\bar{\theta}$) are functions of height only. The quasi-compressible set has "pseudo" sound waves traveling at speed c_s ; the pressure approaches an anelastic solution (Droegemeier and Wilhelmson 1987, J. Atmos. Sci., p. 1187). The continuous form w/ advection, diffusion, pressure, and buoyancy:

u-momentum:	$u_{t} = -uu_{x} - vu_{y} - wu_{z} - \frac{1}{\overline{\rho}} p'_{x} + K(u_{xx} + u_{yy} + u_{zz})$
v-momentum: (3-D, only)	$v_t = -uv_x - vv_y - wv_z - \frac{1}{\overline{\rho}}p'_y + K(v_{xx} + v_{yy} + v_{zz})$
<i>w-momentum:</i> $ (\theta' = \theta - \overline{\theta}) $	$w_{t} = -uw_{x} - vw_{y} - ww_{z} - \frac{1}{\overline{\rho}}p'_{z} + g\frac{\theta'}{\overline{\theta}} + K(w_{xx} + w_{yy} + w_{zz})$
Perturbation pressure:	$p'_{t} = -c_{s}^{2} \left(\overline{\rho} \frac{\partial u}{\partial x} + \overline{\rho} \frac{\partial v}{\partial y} + \frac{\partial}{\partial z} (\overline{\rho} w) \right)$
θ (pot. temperature):	$\theta_t = -(u\theta)_x - (v\theta)_y - (w\theta)_z + \theta(u_x + v_y + w_z) + K(\theta_{xx} + \theta_{yy} + \theta'_{zz})$

The <u>discrete</u> equations use *forward* time differencing for θ , and *centered* for u, v, w, p:

$$u: \quad \delta_{2t}u = -\overline{\left(\overline{u}^x \delta_x u\right)_{(n)}^x} - \overline{\left(\overline{v}^x \delta_y u\right)_{(n)}^y} - \overline{\left(\overline{w}^x \delta_z u\right)_{(n)}^z} - \frac{1}{\overline{\rho}} \delta_x p'_{(n-1)} + K_m \left(\delta_{xx} u + \delta_{yy} u + \delta_{zz} u\right)_{(n-1)}$$

$$v: \quad \delta_{2t}v = -\overline{\left(\overline{u}^y \delta_x v\right)_{(n)}^x} - \overline{\left(\overline{v}^y \delta_y v\right)_{(n)}^y} - \overline{\left(\overline{w}^y \delta_z v\right)_{(n)}^z} - \frac{1}{\overline{\rho}} \delta_y p'_{(n-1)} + K_m \left(\delta_{xx} v + \delta_{yy} v + \delta_{zz} v\right)_{(n-1)}$$

$$w: \quad \delta_{2t}w = -\overline{\left(\overline{u}^z \delta_x w\right)_{(n)}^x} - \overline{\left(\overline{v}^z \delta_y w\right)_{(n)}^y} - \overline{\left(\overline{w}^z \delta_z w\right)_{(n)}^z} - \frac{1}{\overline{\left(\overline{\rho}\right)}^z} \delta_z p'_{(n-1)} + g\overline{\left(\frac{\theta'}{\overline{\theta}}\right)_{(n)}^z} + K_m \left(\delta_{xx} w + \delta_{yy} w + \delta_{zz} w\right)_{(n-1)}$$

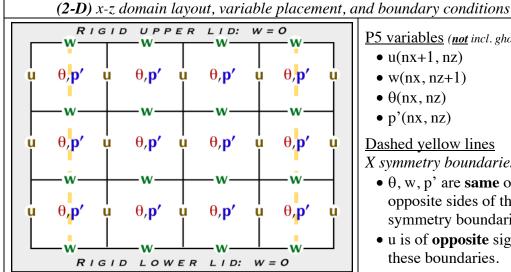
$$p': \quad \delta_{2t}p' = -c_s^2 \overline{\left[\rho \delta_x u_{(n+1)} + \overline{\rho} \delta_y v_{(n+1)} + \delta_z \overline{\left(\overline{\rho}\right)^z} w_{(n+1)}\right\}} \quad (c_s \text{ is the chosen sound speed})$$

$$2D: \text{ PL advection, plus 2-D diffusion. } 3D: \text{ Strang splitting } + 3\text{-D diffusion:}$$

$$\theta: \quad \left[F_x \left(\frac{\Delta t}{2}\right) \right] F_y \left(\frac{\Delta t}{2}\right) F_y \left(\frac{\Delta t}{2}\right) F_y \left(\frac{\Delta t}{2}\right) F_x \left(\frac{\Delta t$$

u, v, w advection follow the (unsplit) "box method," not to be confused with the implicit scheme of the same name. Pressure and diffusion terms are lagged (at time n-1). θ is advected with Lax-Wendroff or piecewise linear methods. *Note:* time levels, averaging!

B. Grid layout and boundary conditions



P5 variables (not incl. ghost zones)

- u(nx+1, nz)
- w(nx, nz+1)
- $\theta(nx, nz)$
- p'(nx, nz)

X symmetry boundaries --

- θ , w, p' are same on opposite sides of the symmetry boundaries
- u is of **opposite** sign across these boundaries.

- Dimensions:
 - Use $\Delta x = \Delta z$; grid spacing, dimensions to be announced.
 - We will do *test cases* at coarse resolution, e.g. 200m or larger.
 - physical dimensions are **no longer** from (-.5, -.5) to (+.5, +.5)
 - x coordinates (for θ , p') = $\Delta x/2 + \Delta x(i-1)$, i=1...nx (Fortran)
 - o bottom-left corner θ , p' are at $(x=\Delta x/2, z=\Delta z/2)$
 - w (at k=1 in Fortran, k=K1 in C) is at z=0
 - u (at i=1 in Fortran, i=I1 in C) is at x=0
- Top, bottom boundaries:
 - o free slip (no drag on u); rigid lids (w=0 at k=1 and k=nz+1 in Fortran)
 - 0-gradient for all variables; any variable $\xi(k=0) = \xi(k=1, Fortran)$, etc.
- Lateral (x) boundaries: symmetry boundaries shown with dashed yellow lines
 - \circ u(1) = -u(2) u(nx+1) = -u(nx) (Fortran indices here)
 - $\theta(0) = \theta(2)$ $\theta(nx+1) = \theta(nx-1)$ (same for w,p')
- Lateral (y) boundaries: (3D, only)
 - o Y boundaries are *periodic*. Consider the periodic boundary to sit at the V wind locations for j=1 and j=ny+1.
 - You will only integrate V from 1:ny (Fortran indices); the value of V at (ny+1) will always be set equal to V at i=1.
 - Other variables are periodic in Y as $\xi(ny+1) = \xi(1)$, etc.

C. Initial conditions (base state)

- First you must define the *base state vertical profiles* for density $\overline{\rho}$ and base-state potential temperature $\overline{\theta}$. We only need $\overline{\rho}$ for later use; other variables (z, P, T) are used only to calculate $\overline{\rho}$ (there is no need to save T(z) and P(z)).
- The first vertical velocity level, w at *Fortran* k=1, is at z=0 consistent with our *C-grid* staggering. Variables u, p, q start at $z=\Delta z/2$.
- In the expressions below, z refers to the height at a θ and p' level. The notation given is for Fortran.

$$z(k) = \frac{\Delta z}{2} + \Delta z(k-1)$$

$$\overline{T}(z) = 300.0 - \frac{g}{c_p} z$$

$$\overline{P}(z) = P_0 \left(\frac{\overline{T}}{\overline{\theta}}\right)^{c_p/R_d}$$
 where
$$\begin{cases} z = \text{height (m) of } \theta, u, p' \text{ levels} \\ \overline{\theta}(z) = 300K = (\text{constant) potential temperature} \\ g = 9.81 \text{ ms}^{-2} = \text{gravity} \\ c_p = 1004 \text{ J kg}^{-1} \text{K}^{-1} = \text{specific heat at constant pressure} \\ R_d = 287 \text{ J kg}^{-1} \text{K}^{-1} = \text{dry air gas constant} \\ P_0 = 10^5 \text{ Pa} = \text{standard pressure at sea level} \\ \overline{\rho} = \text{density } (kg \ m^{-3}) \text{ at } \theta, u, p' \text{ levels}$$

Check your initial state with this data for $\Delta z=100$ m, at (Fortran) k=11, z=1050m:

- P=88540 Pa
- T=289.74 K
- $\rho_{u \ level} = 1.065 \text{ g kg}^{-1}, \, \rho_{w \ level} = 1.069 \text{ g kg}^{-1}.$
- Note you compute $\rho_{u \ level}$ as above, and average in height to get $\rho_{w \ level}$; this is why $\rho_{w \ level}$ is written as $\overline{(\overline{\rho})}^z$ on page 1.
- $\rho_{w \ level}$ at k=1 can have any value; it is only used where multiplied by w, and $w_{ground} = 0$.

D. Initial conditions (perturbation potential temperature and u, w)

2D: The solution evolves from an initial state with zero mean flow U(z) and constant potential temperature (θ). We begin with temperature perturbations: where θ ' is warm (cool) the air will rise (sink). The initial u, w, and p' are zero. For θ , use:

$$\theta_{i,k} = \overline{\theta} + \sum_{m=1}^{2} \left[\Delta \theta_m' \frac{\cos(r_m \pi) + 1}{2} \text{ if } r_m \le 1, \text{ else } 0 \right], \quad r_m = \sqrt{\left(\frac{x_i - x_0(m)}{xradius}\right)^2 + \left(\frac{z_k - z_0(m)}{zradius}\right)^2}$$

so $\theta(i,k)$ at time t=0 equals the base state (constant) $\overline{\theta}$ plus any perturbation $\Delta\theta'(m)$, for up to **two** initial temperature perturbations m=1,2.

Structure your IC code for setting up θ like that given below. The example code below is for 3-D; *simplify appropriately* for 2D:

Fortran	<pre>C requires <math.h></math.h></pre>
do $k = 1, nz$	for (i=I1; i<=I2; i++) {
do j = 1, ny	for (j=J1; j<=J2; j++) {
do $i = 1, nx$	for (k=K1; k<=K2; k++) {
x = dx/2+dx*real(i-1)	x = dx/2.0 + dx*(float)(i-I1);
y = dy/2+dy*real(j-1)	y = dx/2.0 + dx*(float)(j-J1);
z = dz/2+dz*real(k-1)	z = dx/2.0 + dx*(float)(k-K1);
do $m = 1, 2$	for (m=0; m<2; m++) {
xd = (x-x0 (m))	rm = sqrt(
yd = (y-y0 (m))	pow((x-x0[m])/xradius[m],2.0)
zd = (z-z0 (m))	+pow((y-y0[m])/yradius[m],2.0)
rad = sqrt(+pow((z-z0[m])/zradius[m],2.0));
(xd/xrad(m))**2 &	if (rm <= 1.0) {
+(yd/yrad(m))**2 &	/* your $ heta$ code here */
+(zd/zrad(m))**2)	} /* rm */
if (rad.lt.1.0) then	} /* m */
!your $ heta$ code here	} /* k */
endif	} /* j */
enddo (+3 more enddo's)	} /* i */

These *two* thermal perturbations $\Delta\theta$ ' have different center (x,z) coordinates. The x- and z-"radius" *may vary* between perturbations, so you must store two sets of "radii".

<u>3D</u>, <u>only</u>: Perturbations have 3-D center positions (x,y,z). You will also create perturbations to the **v** flow component, *using the same code* as for θ :

$$\theta_{i,j,k} = \overline{\theta} + \sum_{m=1}^{2} \left[\Delta \theta_m' \frac{\cos(r_m \pi) + 1}{2} \text{ if } r_m \le 1, \text{ else } 0 \right]$$

$$v_{i,j,k} = \sum_{m=1}^{2} \left[\Delta v_m \frac{\cos(r_m \pi) + 1}{2} \text{ if } r_m \le 1, \text{ else } 0 \right]$$

$$r_m = \sqrt{\left(\frac{x_i - x_0(m)}{xradius_m}\right)^2 + \left(\frac{y_j - y_0(m)}{yradius_m}\right)^2} + \left(\frac{y_j - y_0(m)}{yradius_m}\right)^2$$

Calculate r_m for each point (i,j,k), and use it in the computation of *both* perturbation θ and v-wind (*ignore* staggered grid positions in doing so; use the *same* r_m value, code).

For 3-D, we also utilize random initial \mathbf{u} values, up to $\pm -(upertur/2)$. Use the default Intel Fortran/C random number generator. Here is sample code:

Fortran	<pre>C requires <math.h></math.h></pre>
real upertur, rand	float upertur;
call srand(0.0)	srand(0.0); /* seed */
do k = 1, nz	for (i=I1+1; i<=I2; i++) {
do j = 1, ny	for (j=J1; j<=J2; j++) {
do i = 1, nx+1	for (k=K1; k<=K2; k++) {
u1(i,j,k) = &	u1[i][j][k] = upertur * (
(rand(0)-0.5)*upertur	(float)rand()/(RAND_MAX + 1.0)
enddo) - upertur*0.5;
enddo	}
enddo	} }

E. Code layout

The code layout guidelines include those from past programs *plus the following*:

- Do not put your integration (advection, diffusion, pressure gradient, buoyancy, initialization...) steps in your main program; put each in a separate subroutine.
 You must also use (to build your program) and submit (for grading) a makefile.
- **Read in** from the keyboard or a file, or use via a Fortran namelist:
 - times to plot (or, a plotting interval) temperature perturbations and their center locations (x,z or x,y,z) diffusion coefficients K_m and K_{theta}.
- Use ghost zones as before, as needed for the numerical schemes being applied.
- Set up the initial conditions (1-D for density, and 2-D or 3-D fields) entirely in one subroutine. Plot the initial potential temperature perturbation $(\theta \overline{\theta})$.
- You must put common processes *for different variables* in the same subroutines: advection (u,w,θ) (with 1-D advection still handled by a separate 1D routine); diffusion (u,w,θ) , and pressure gradient force/buoyancy (u,w,p^2) .
- Your main program must ONLY read input data, print out information as desired and call subroutines. All other code must be in subroutines for full credit.
- Remember w=0 at the top and bottom levels (k=1 and k=nz+1 in Fortran). So you do z mixing for w only from k=2:nz (in Fortran).
- Don't evolve u outside of the symmetry boundaries; compute u(2...nx) and then determine u(1) and u(nx+1) using the (a)symmetric boundary conditions.
- For pressure, first compute new values for u and w at time level (n+1). Then update the pressure from (n-1) to (n+1) using $u^{(n+1)}$ and $w^{(n+1)}$ to get $p^{(n+1)}$.
- The order of computation is: advection (u, w, θ) ; diffusion, and pressure terms.
- Use a forward time step to start the integration (there is a short cut we'll discuss).
- 3D: For full credit, you must make a reasonable attempt at parallelizing your code, and part of your grade also requires visualization.

F. Plotting

2D: plot contours as usual. We will not use surface plotting.

<u>3D</u>: You *will not* be calling plot routines directly from your 3D program. Doing so is slow and wasteful considering how long your programs will (at full resolution) take to rerun. Instead, you will call a C or Fortran routine *putfield* (provided to you) to write your output to disk. Required plots will be listed on the class web site.

G. Hints

- Do initial testing at *reduced resolution*, e.g. $\Delta x = \Delta z = 200 \text{m}$, $\Delta t = 0.5 \text{s}$.
- In testing (for Fortran), do early tests compiling with subscript checking: -g -check all -traceback.
- Beware! **NX\neqNZ here**. Think where you have assumed NX=NZ in programs 1-3.
- For min/max stats and plotting, average u and w to θ/p locations; and plot $(\theta \overline{\theta})$
- We are using forward time differencing for θ advection, and centered time for everything else. So, $\delta_{2t}u$ means $u3 = u1 + 2\Delta t^*(...)$; θ advection is forward in time, so only two arrays are needed [handled as in programs 1-3].

H. Checking your code

There are various checks you could carry out to test parts of your code. Some tests you could perform include:

- 1. Linear advection: observe movement of θ ' field with constant u and/or w fields while disabling diffusion, buoyancy and pressure gradient terms.
- 2. 1-D: reduce two-dimensional initial condition to 1-D (e.g. let θ , u, or w vary as $\sin(x)$) for advection tests.
- 3. Diffusion only: disable advection, buoyancy and pressure gradient terms, and damp only θ or some pre-determined function of u or w.
- 4. Pressure gradient and buoyancy terms, only: disable advection and diffusion, and integrate using the pressure gradient terms (influences *u*, *w*), buoyancy term (influences *w*), and the pressure field update itself (from gradients in *u*, *w*). In this test, the θ field stays constant with time, and a circulation develops in the *u* and *w* fields. This is a particularly useful test. The sequence of evolution to look for is:
 - a. The temperature perturbation θ ' leads to vertical acceleration, changing w
 - b. The new, nonzero w field creates pressure gradients (from $\partial w/\partial z$)
 - c. The pressure gradients lead to horizontal acceleration, changing u
- 5. Look for symmetry in your solutions. For example, an initial temperature perturbation placed at the very center of the domain will lead to minima and maxima of opposite sign in *u*; this should remain true as your solution evolves.
 - a. But: the symmetry is in x; comparable symmetry will not occur in z due to the density variation with height.

I. Visualization (3D only)

Required plots will be discussed in class. Beyond this, part of the program grade (see below) involves creating a few 3-D plots with the visualization tool *VisIt*. See the class web site for details.

1.	MAIN	PROGRAM	NOTES
	a.	read in parameters; call <i>IC</i>	1.0120
	b.	plot initial condition	Always plot θ ', not total θ
	c.	call MAXMIN	Print min, max of all fields [optional]
	d.	call BC	Set ghost points for first time step
	e.	$set\ tstep = \Delta t$	Because your first step is a forward one
	f.	TIME LOOP: $n=1$, max steps	
		• set $u3=u1$, $w3=w1$, $t3=t2$	Array copy helps start this time step.
		• call ADVECT	Advection of $\boldsymbol{\theta}$, u, and w.
		• call DIFFUSION	Mix: u, w, and θ (note: in general $K_m \neq K_{theta}$)
		• call <i>PGF</i>	Obtain u3,w3; get new p3
		array update	This is the usual array switch between old, new
		7 1	time levels. There are three time levels for u,
			$\mathbf{w}, \mathbf{p}, and \mathbf{\theta}.$
			But : if first step, don't update u1, w1, or p1.
			1 1
		• if $(n=1)$ set tstep = $2\Delta t$	Switch from forward to centered time for u,w,p.
		• call <i>BC</i>	Get BCs ready for next time step.
		• call <i>MAXMIN</i>	also store max/min info for later use.
		• if desired time: PLOT	Call contour routine for u, w, θ ', and p
	g.	END OF TIME LOOP	Can contour fortine for a, w, o, and p
	h.	plot time traces	using min/max u/w/θ I have already stored
2.	IC RO	UTINE	Compute constants and 1D arrays here.
	a.	compute 1D arrays	includes density(z) at θ and w levels
	b.	set p', $u, w = 0$	Do this for (n) and (n-1) variables; this is part
		(in the 3D case, we set v using	of preparing for the first, forward time step
		perturbations, and set <i>u</i> to	(hence tstep is first set to Δt , and later to $2\Delta t$)
		random numbers; u _{t=0} is nonzero in 3D)	Remember you <i>read in</i> the temperature
			perturbations and their locations
	c.	set θ' based on handout.	
3.	BC RO	<u>UTINE</u>	
	a.	0-gradient top, bottom	So $u(i,nz+1) = u(i,nz)$
	b.	\mathbf{w} , $\mathbf{\theta}$, and \mathbf{p} ' are same on either side of	So $p(0,k) = p(2,k)$,
		symmetry boundary	p(nx+1,k)=p(nx-1,k)
_	C.	Anti-symmetry for u	So $u(1,k) = -u(2,k)$, $u(0,k) = -u(3,k)$
4.		CT ROUTINE	Deceller on a house contact 14 or 1 of or 4 or
	a.	u: u3 = u3 + tstep*(box terms)	Recall u,w,p have centered time derivatives.
	b.	yy = yy2 + totan* (hav tarms)	For 3D, do <i>v</i> advection here, too.
		w: w3 = w3 + tstep* (box terms)	Piecewise linear method (initially, use Lax-W)
5.	C.	θ advection as usual (but have 3 arrays) SION ROUTINE	1 recewise finear friction (finitially, use Lax-W)
3.	<u>DIFFU</u> a.	u3 = u3 + tstep*(x, z mixing terms)	For 3D, do <i>v</i> diffusion, too.
	а. b.	w3 = w3 + tstep*(x, z mixing terms)	W is always zero at k=1 and at k=nz+1
	c.	$\text{Mix }\theta \dots$	W 15 always 2010 at K 1 and at K 112+1
6.		UBROUTINE	Pressure gradient / buoyancy routine.
"	a.	u3 = u3 - $tstep*(pgf terms)$	Adding to the u3 array.
	b.	w3 = w3 - tstep*(pgf terms)	Adding to the w3 array.
	0.	+ tstep*(buoyancy terms)	Remember w=0 at k=1 and k=nz+1
		± , • ,	
	c.	set u, w BCs (could call BC, or set here)	Get ready for derivatives in p equation
	d.	p3 = p1 - (pgf terms)	pgf terms use new u, w at time (n+1)

